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Abstract In the past 5 years transcriptome or RNA-sequencing (RNA-seq) has steadily
emerged as a complementary assay for rare disease diagnosis and discovery. In this
perspective, we summarize several recent developments and challenges in the use of
RNA-seq for rare disease investigation. Using an accessible patient sample, such as blood,
skin, or muscle, RNA-seq enables the assay of expressed RNA transcripts. Analysis of RNA-
seq allows the identification of aberrant or outlier gene expression and alternative splicing
as functional evidence to support rare disease study and diagnosis. Further, many types of
variant effects can be profiled beyond coding variants, as the consequences of noncoding
variants that impact gene expression and splicing can be directly observed. This is particu-
larly apparent for structural variants that disproportionately underlie outlier gene expression
and for splicing variants in which RNA-seq can both measure aberrant canonical splicing
and detect deep intronic effects. However, a major potential limitation of RNA-seq in
rare disease investigation is the developmental and cell type specificity of gene expression
as a pathogenic variant's effect may be limited to a specific spatiotemporal context and ac-
cess to a patient’s tissue sample from the relevant tissue and timing of disease expression
may not be possible. We speculate that as advances in computational methods and emerg-
ing experimental techniques overcome both developmental and cell type specificity, there
will be broadening use of RNA sequencing and multiomics in rare disease diagnosis and
delivery of precision health.

MEASURING RARE VARIANT EFFECTS USING TRANSCRIPTOMICS

Transcriptome or RNA-sequencing (RNA-seq) in specific cell types or tissues can provide ro-
bust quantification for the expression levels of more than 8000 genes and further tens of
thousands of splice junctions, providing extensive coverage of a broad range of molecular
events. In contrast to targeted methods of RNA quantification such as reverse transcription
polymerase chain reaction (RT-PCR), this approach can provide a broad view of transcription-
related molecular events. In addition, the types of molecular events evaluated by RNA-seq
extend beyond expression and splicing levels of known gene products as identification and
quantification of noncoding genes, novel transcripts, fusion genes, retained introns, alterna-
tive polyadenylation, and transcription starts can be determined. Further, additional molec-
ular signals are also quantifiable including allele-specific expression, nonsense-mediated
decay, and RNA editing.

Each transcript measured by RNA-seq is subsequently amenable to genetic analyses.
When profiled in human population samples, genetic association analyses have uncovered
abundant quantitative trait loci (QTLs) for common genetic variants (The GTEx Consortium
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2020). However, extending these analyses to rare variant effects has been more challenging
because of increased uncertainty around effect sizes and the abundance of rare variants to
test in any human population sample (Keinan and Clark 2012; Bomba et al. 2017). To miti-
gate some of these challenges and focus on impactful rare variants, analyses can be restrict-
ed to rare variants associated with outlier expression measurements. As such, we and others
have shown that genes with outlier expression in an individual are enriched in gene proximal
rare variants (Montgomery et al. 2011; Zeng et al. 2015; Zhao et al. 2016; Li et al. 2017).
These enrichments were further significant for all major classes of genetic variants but
were most striking for rare structural variants reinforcing the ongoing needs for accurately
identifying structural variants in individual genomes and the use of transcriptomes to guide
interpreting variant effects (Ferraro et al. 2020). Furthermore, these enrichments informed
both protein-coding and noncoding variant effects; rare, protein-truncating variants were
highly enriched in individuals with outlier gene expression because of the effects of non-
sense-mediated decay on gene expression, and rare, predicted splicing variants were highly
enriched in individuals with outlier splicing levels. To continue the discovery of outlier-asso-
ciated rare variants will require that future transcriptome studies are complemented by high-
quality whole-genome data. Further, as these studies have focused predominantly on
expression and splicing outliers, other outlier molecular effects from the range of multiomics
assays are only beginning to be systematically integrated with transcriptome data (Kopaijtich
et al. 2021).

When considering the potential for transcriptome sequencing for rare disease diagnosis,
these studies in healthy individuals have demonstrated that outlier effects can be driven by
diverse categories of rare variants. They have demonstrated that RNA-seq can facilitate de-
tecting the effects of specific candidate variants, particularly for splicing. Further, they have
demonstrated that computational methods that combine both whole-genome and RNA-seq
data from the same individual can enhance the prioritization of large-effect, rare variants and
such variants can have increased impacts on diverse traits and diseases (Li et al. 2017; Ferraro
et al. 2020). However, there are few other computational methods that integrate individual
genomes and transcriptomes to prioritize rare variants, particularly in comparison to variant
effect prediction tools that use genome data alone. This is an area of method development
that will grow as future approaches combine advances in machine leaming for variant effect
prediction with individual -omics data to improve discovery of pathogenic rare variants.

DIAGNOSTIC YIELD OF TRANSCRIPTOMICS IN RARE DISEASES

Itis estimated that the current diagnostic yield of DNA sequencing is 25%-30% in large, het-
erogeneous rare disease cohorts (Jacob et al. 2013; Yang et al. 2013; Iglesias et al. 2014, Lee
etal. 2014; Yang et al. 2014; Posey et al. 2016; Deciphering Developmental Disorders Study
2017; Tan etal. 2017; Clark et al. 2018). In homogeneous rare diseases cohorts, the diagnos-
tic yield can range from 40% to 60% (Shashi et al. 2014; Ankala et al. 2015; Wortmann et al.
2015; Yuen et al. 2015; Splinter et al. 2018; 100,000 Genomes Project Pilot Investigators
et al. 2021). To investigate further increases to this yield, a number of studies in the past
5 years have used RNA sequencing (Cummings et al. 2017; Kremer et al. 2017; Frésard
et al. 2019; Gonorazky et al. 2019; Lee et al. 2020; Rentas et al. 2020; Murdock et al.
2021; Yépez et al. 2021). The public availability of RNA-seq data from rare disease cohorts
is poised to accelerate; for example, the Undiagnosed Disease Network has shared RNA-
seq data for 816 patient samples (phs001232.v4.p2) and the National Institutes of Health
(NIH) Centers for Mendelian Genomics Consortium has generated RNA-seq data for 714 pa-
tient samples (Baxter et al. 2022). Across these research studies, the use of transcriptomics
has predominantly been a secondary activity aimed to evaluate if aberrant expression or
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splicing events can improve identification of pathogenic variants in patients in whom DNA
sequencing alone has not yielded a definitive genetic cause. Despite recent advances, clin-
ical transcriptomic testing for Mendelian conditions is currently available from only a few ref-
erence laboratories (https://www.ncbi.nlm.nih.gov/gtr/).

The earliest application of transcriptomics to enhance diagnostic yield in a DNA-
sequenced rare disease cohort was conducted by Cummings et al. (2017) to survey 50 pa-
tients with genetically undiagnosed rare muscle disorders. Cummings et al. focused on anal-
ysis of muscle tissue in comparison to 180 healthy controls muscle samples from the NIH
Common Fund Genotype Tissue Expression (GTEx; gtexportal.org) project to identify pre-
dominantly splice-altering variants and reported a diagnostic yield of 35%. Kremer et al.
(2017) conducted another study in which they generated fibroblast transcriptomes for 48 pa-
tients with undiagnosed rare mitochondriopathies and compared them to a cohort of 105
patients (including the original 48) to achieve a diagnostic yield of 10%. Our own work eval-
uated the utility of blood transcriptomes for diverse rare disease cases encountered by a clin-
ical genomics service (Frésard et al. 2019). We generated blood transcriptomes for a
heterogenous rare disease cohort of 94 patients and compared them to nearly 1000 healthy
control samples to achieve an incremental diagnostic yield of 7.5%. We further estimated the
need for hundreds of healthy individual samples per tissue type to achieve robust estimates
of a patient’s outlier effect as increasing enrichments of outliers in loss-of-function intolerant
genes were observed as a function of healthy reference sample size. Since these studies, a
number of comparable analyses have systematically used RNA-seq to supplement rare dis-
ease investigations reporting increases in diagnostic yields ranging from 7% to 36%
(Gonorazky et al. 2019; Lee et al. 2020; Rentas et al. 2020; Murdock et al. 2021; Yépez
et al. 2021), and a growing number of reviews provide additional insights into this area of
research (Saeidian et al. 2020; Lord and Baralle 2021; Macken et al. 2021; Ergin et al. 2022).

Despite the new diagnostic opportunities presented by these studies, they have also pre-
sented different diagnostic yields and collectively indicated several key factors when using
transcriptome sequencing in a rare disease setting. A primary factor is the extent of prior in-
formation on both the mode of inheritance and likely causal genes. Relatively easier cases to
diagnose using transcriptome sequencing are recessive diseases with known causal gene(s)
and a yet-to-be-annotated pathogenic variant. Here, transcriptome sequencing can evaluate
for splice or regulatory effects within the focus of the causal gene or gene set. This is further
facilitated if one of the pathogenic alleles is already identified and the underlying cause is
suspected to involve compound heterozygosity with the second, yet-to-be-discovered
allele. At least three of the solved cases from Cummings et al. involved compound hetero-
zygosity of a protein-coding and splicing variant. The most challenging cases to supplement
with transcriptome sequencing remain somatic mosaic disorders (Ayturk et al. 2016) and dis-
orders in which candidate genes remain unknown and few, if any, clinical diagnoses have
been made.

Another critical factor in assessing the incremental diagnostic yield of RNA-seq in rare
disease cohorts was study design. Unlike genome sequencing (NICUSeq Study Group
et al. 2021), there has yet to be a randomized clinical trial on the diagnostic yield for RNA-
seq. As such, existing studies are either exploratory or retrospective and can vary on how
they define solved cases. The study design in Cummings et al. focused on rare myopathies
using muscle RNA-seq, and ultimately 15 of their 17 novel diagnoses were within four well-
known myopathy genes: COL6A1, DMD, NEB, and TTN. Cases were diagnosed if a com-
plete genetic diagnosis could be inferred in the context of an outlier splice event. Kremer
et al.’s study design focused on rare mitochondriopathies using fibroblast RNA-seq. The au-
thors were able to report a novel disease association for TIMMDC1 and considered cases
solved if a disease-associated variant was detected and RNA-seq effects were validated in
proteomics and/or biochemical assays. Fresard et al.s study design focused on a
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heterogeneous mix of rare diseases using blood RNA-seq and was limited to defining a case
solved only when clinically curated variants and outlier genes converged and a complete ge-
netic explanation was possible. For each study, future refinements of candidate gene sets
and follow-up validation experiments are expected to increase the diagnostic yield. To
this point, both Kremer et al. and Fresard et al. indicated a high number of promising expres-
sion and splicing outlier genes in which a complete genetic diagnosis was yet to be
confirmed.

IMPACTS OF DEVELOPMENTAL AND CELL TYPE SPECIFICITY

An often-discussed challenge with use of transcriptome sequencing to aid rare disease diag-
nosis is the unknown impact of developmental and cell type specificity of gene expression.
Several genetic diseases can occur because of mutations in tissue restricted transcripts in dif-
ficult to access tissues (i.e., cerebral cortex, myocardium). Multiple congenital disorders are
already known to have developmental- and cell type-specific etiologies driven by specific
enhancer mutations (Claringbould and Zaugg 2021). Existing transcriptome-based rare dis-
ease studies have profiled a range of relatively accessible tissues and cell lines from blood,
fibroblasts, lymphoblastoid cell lines, or muscle. However, if a disease-causing rare variant's
impact is restricted in time and space, profiling a more readily sampled cell type could fail
to provide any meaningful extra diagnostic information and add additional patient burden
and cost.

Assessing the extent and impact of cell type specificity of genetic effects was a major ra-
tionale for the GTEx project’s survey of gene expression and splicing across the human body
(The GTEx Consortium 2020). GTEx identified a U-shaped pattern for specificity of common
variant effects with gene regulatory effects being either highly shared or highly tissue-
restricted. GTEx also identified that a variant's proximity to a gene and a gene's expression
level were good indicators of whether an effect would be observed in an unassayed tissue.
The observation is expected to extend to rare variants as our own GTEx-based analysis of the
expression level impacts of protein-truncating variants that induce nonsense-mediated de-
cay exhibited minimal tissue variability, indicating that as long as the gene is expressed, tran-
scriptome data can guide interpretation of multiple gene proximal variant effects (Teran et al.
2021).

For future rare disease studies, approaches that help identify the most informative cell
types to study will also significantly aid in informed use of transcriptome data. We have re-
cently seen the increased emergence of studies that demonstrate the utility of accessible
cell types when the pathological tissue is hard to obtain. For example, Rentas et al. showed
that lymphoblastoid cell lines derived from blood were highly relevant for neurodevelop-
mental rare diseases exhibiting broad isoform sharing with brain tissues and an overall ability
to survey more than 1700 rare neurodevelopmental disease genes (Rentas et al. 2020).
Complementing this are new tools that use phenotype information to guide the tissue-selec-
tion decision-making process. Velluva et al. (2021) recently reported the Phenotype-Tissue
Expression and Exploration (PTEE) tool to guide selection of analysis tissues in different dis-
ease contexts. Future approaches may also begin to triangulate a subset of assayable cell
types that are most relevant for a patient instead of selecting a single tissue to analyze. In
our own work, we observed that combining undifferentiated induced pluripotent stem cells
(iPSCs) and blood transcriptomes from the same patient could enhance detection of outlier
events and rapidly narrow candidate disease genes (Bonder et al. 2021). Likewise, Murdock
et al. (2021) studied outliers in both blood and fibroblasts from the same patients.

Beyond bulk transcriptomes, single-cell multiomics offers multiple emerging opportuni-
ties to map developmental and cell type—specific effects. Large-scale single-cell catalogs
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such as the Human Cell Atlas and Tabula Sapiens provide opportunities to map expression
levels of candidate genes in highly specific cell types across the human body (Regev et al.
2017; The Tabula Sapiens Consortium and Quake 2021). Future bulk and single-cell data
sets from the Developmental GTEx (dGTEX) project will increase our understanding of hu-
man population variability in gene expression and splicing through development. Further,
reference single-cell chromatin accessibility maps provide annotation of developmental
and cell type-specific regulatory elements as potential targets of rare variant effects. The util-
ity of these data is apparent in a recent map of single-cell chromatin accessibility in the de-
veloping cerebral cortex that identified an enrichment of de novo mutations from autism
cases in the accessible chromatin of developing radial glial cells—an enrichment that authors
noted was comparable to deleterious protein-coding mutations (Trevino et al. 2021). These
reference single-cell data, when combined with advances in noncoding variant effect predic-
tion, will increasingly aid the prediction of development and cell type—specific pathological
contexts and the experimental cellular proxies or analysis tissues for functional validation as-
says of patient-derived variants and mutations.

COMPUTATIONAL METHODS FOR TRANSCRIPTOMICS IN RARE DISEASE

Recent use of transcriptomics in rare diseases has led to multiple computational advances.
One class of such advances has been pipelines and tools to define robust outlier gene ex-
pression or splicing events. Most prior studies have used a combination of defining z-score
thresholds and/or assessed differential expression with DESeq?2 (Love et al. 2014). This ap-
proach requires careful normalization of control data with respect to case data as there are
often few rare disease samples sequenced separately from the majority of reference healthy
controls. One approach to overcoming this has been to model and regress out known and
latent factors across sequencing batches (Frésard et al. 2019). Separate computational tools
called OUTRIDER and FRASER have been developed specifically for the task of rare disease
diagnosis with RNA-seq by providing an end-to-end approach for correcting technical noise
and providing a statistical test for expression and splicing outliers (Brechtmann et al. 2018;
Mertes et al. 2021). These tools model latent factors using an autoencoder and report stat-
istical significance from a negative-binomial or f-binomial distribution. For splicing alone,
the LeafCutterMD tool has provided an approach to detecting outliers and was designed
to overcome class imbalance issues present when comparing small numbers of patient sam-
ples to multiple controls (Jenkinson et al. 2020). For each outlier detection approach, once a
patient’s transcriptome sample has been processed, there remains the possibility that too
many outliers are detected because of sample-specific issues that corrupt the measurement
of many genes. To address this, we have often removed or reprocessed samples with abun-
dantoutliers (i.e., >50). Additionally, defining a meaningful outlier threshold for investigation
can vary across studies and samples. In the cases in which there is a single known candidate
gene, the threshold for outlier effects may benefit from being reduced or in some cases man-
ually inspected (Lee et al. 2020).

Another computational approach for guiding identification of causal genes and variants
in rare disease transcriptomes has relied on allele-specific expression (ASE) analysis. ASE is
measurable by assessing the relative abundance of RNA sequencing read ratios over hetero-
zygous coding variant sites; however, such variants need not be causal themselves (Castel
et al. 2015). Several previously mentioned transcriptome studies from rare disease cohorts
have used ASE as an additional signal to inform outlier events or potential haploinsufficiency.
An additional study has also demonstrated more generally how ASE can identify likely
Mendelian disease genes in which protein-truncating variants escape nonsense-mediated
decay (Coban-Akdemir et al. 2018). To calculate ASE, most studies have used the WASP
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pipeline, which aims to overcome mapping biases for non-reference allele-containing se-
guencing reads (Geijn et al. 2015). For rare disease transcriptome analysis, the computation-
al tool ANEVA-DOT has further provided an approach to identify outlier ASE (Mohammadii
etal. 2019). When applied to cases from Cummings et al., 76% of cases had outlier ASE in a
confirmed disease gene. Notably, this was among a small number of ASE outlier events de-
tected perindividual. Future computational approaches can likely increase the use of ASE in
rare disease settings by integrating outlier expression and allele-specific expression into a
combined outlier detection model.

Supplementing exome data, methods for calling variants from transcriptome data pro-
vide an opportunity for identifying rare coding alleles, splice sites, and structural variants.
One such tool, MINTIE, was applied to data from Cummings et al. and showed detection
of 9 of 13 novel splice variants from 10 individuals and the identification of a previously un-
observed fusion product in the DMD gene (Cmero et al. 2021). Both Gonorazky and Yépez
et al. further have applied GATK-based RNA-seq variant calling in their rare disease cohorts
to extend coverage and identification of pathogenic variants into untranslated
regions (UTRs) (Gonorazky et al. 2019; Yépez et al. 2021; RNAseq Short Variant Discovery
(SNPs+Indels)).

Integrative computational approaches that combine a patient’s genome and transcrip-
tome also provide exciting promise for aiding rare disease studies. This remains an area of
nascent activity, and most rare disease transcriptomics studies often assess candidate vari-
ants near outliers manually. To improve this, the computational tools RIVER and
WATERSHED jointly model transcriptome outliers and genomic annotation of proximal var-
iants to prioritize likely causal rare variants (Li et al. 2017; Ferraro et al. 2020). WATERSHED
provides the opportunity to jointly assess gene expression, splicing, and allele-specific ex-
pression outliers. These methods when combined with additional patient multiomics are
likely to continue to enhance prioritization of impactful rare variants. A key to this ongoing
method development will be data sharing of whole-genome, multiomics, and phenotype in-
formation from rare disease patients.

ELIMINATING BARRIERS TO TRANSCRIPTOMICS IN RARE DISEASE STUDY
AND DIAGNOSIS

Experimental advances over the last decade suggest that we are approaching a transition
point at which diagnostic use of transcriptomes may overcome current limitations related
to developmental and cell type specificity. Already skin biopsy—derived fibroblasts and pe-
ripheral blood-derived and —transformed lymphoblastoid cell lines are used as source ma-
terials in rare disease transcriptomic studies. Gonorazky et al. (2019) took this one step
further by transdifferentiating fibroblasts to myotubes and generating RNA-seq to study
the diagnostic yield for patients with undiagnosed neuromuscular disorders. Undifferentiat-
ed iPSC transcriptomes have demonstrated potential use for rare disease diagnoses by iden-
tifying disease-relevant outliers in a heterogeneous cohort of 65 rare disease patients
(Bonder et al. 2021). As additional trans-differentiation and differentiation protocols become
widely available and reproducible, the generation of cell types of interest for transcriptomics
can allow interrogation of a larger portion of the “whole human transcriptome.” Just as ge-
nome sequencing has provided incremental diagnostic power versus exome sequencing, we
believe interrogation of multiple cell types through transcriptomic profiling may be an effec-
tive approach to enhancing diagnostic yield in rare disease. Further, the rapidly emerging
availability of organoid systems and embryoid bodies to explore a range of developmental
and cell type contexts expands the opportunities to study outlier effects in patients (Rhodes
et al. 2022).
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The availability of these cellular models is also providing new opportunities to rapidly test
the impacts of genomic variants in previously hard-to-access contexts. Use of massively par-
allel reporter assays (MPRAs) has enabled testing thousands of variants for regulatory func-
tion in multiple primary cell types (White 2015). Splicing and 3'-UTR variant MPRAs further
provide opportunities to explore new classes of variant effects (Rosenberg et al. 2015;
Griesemer et al. 2021). In parallel, high-throughput and multiplex CRISPRi and CRISPRa as-
says also provide the opportunity to inhibit and activate key regulatory regions harboring
candidate variants and further provide new therapeutic opportunities to overcome haploin-
sufficiency in specific developmental and cell type contexts (Matharu et al. 2019). Strategies
to test variant effects on gene expression and splicing in a range of different developmental
and cell type contexts are already here.

With these advances it becomes possible to envision specific scenarios in which a pa-
tient’s phenotype with, or even without, their genotype can indicate a range of cellular con-
texts to study and that the presence of an aberrant molecular event will be sufficient to
nominate a causal gene. In some cases, knowing the specific causal variant may be second-
ary to a diagnosis, as the nature of an aberrant molecular event that integrates both the un-
seen rare variant and a patient’s genetic background may be sufficient to support a
diagnosis. There will of course be limitations as pathogenic variant effects that do not man-
ifest on gene expression or downstream gene regulatory networks in any cellular context can
be missed. Continued progress toward unlocking transcriptomics as a primary diagnostic
tool at scale will require comprehensive maps of human cell types and their regulatory re-
gions, activities already well underway. It will also require rapid and cost-effective, multi-
plexed cell culture, genetic or chemical perturbation assays that reexpose variant effects.
Finally, it will require data sharing of reference population-scale databases to identify the
normal ranges of molecular activity. With these resources, the future may see patients’
care informed by knowledge of their genetic variants and additionally their personal tran-
scriptomic profile.
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